33 research outputs found

    Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)

    Get PDF
    In applications of Gaussian processes where quantification of uncertainty is of primary interest, it is necessary to accurately characterize the posterior distribution over covariance parameters. This paper proposes an adaptation of the Stochastic Gradient Langevin Dynamics algorithm to draw samples from the posterior distribution over covariance parameters with negligible bias and without the need to compute the marginal likelihood. In Gaussian process regression, this has the enormous advantage that stochastic gradients can be computed by solving linear systems only. A novel unbiased linear systems solver based on parallelizable covariance matrix-vector products is developed to accelerate the unbiased estimation of gradients. The results demonstrate the possibility to enable scalable and exact (in a Monte Carlo sense) quantification of uncertainty in Gaussian processes without imposing any special structure on the covariance or reducing the number of input vectors.Comment: 10 pages - paper accepted at ICML 201

    Myoconductive and osteoinductive free-standing polysaccharide membranes

    Get PDF
    Free-standing (FS) membranes have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we studied the potential of free-standing membranes made by the layer-by-layer assembly of chitosan and alginate to be used as a simple biomimetic system of the periosteum. The design of a periosteum-like membrane implies the elaboration of a thick membrane suitable for both muscle and bone formation. Our aim was to produce well-defined ∌50 ÎŒm thick polysaccharide membranes that could be easily manipulated, were mechanically resistant, and would enable both myogenesis and osteogenesis in vitro and in vivo. The membranes were chemically crosslinked to improve their mechanical properties. Crosslinking chemistry was followed via Fourier transform infrared spectroscopy and the mechanical properties of the membranes were assessed using dynamic mechanical analysis. The loading and release of the potent osteoinductive growth factor bone morphogenetic protein 2 (BMP-2) inside and outside of the FS membrane was followed by fluorescence spectroscopy in a physiological buffer over 1 month. The myogenic and osteogenic potentials of the membranes in vitro were assessed using BMP-2-responsive skeletal myoblasts. Finally, their osteoinductive properties in vivo were studied in a preliminary experiment using a mouse ectopic model. Our results showed that the more crosslinked FS membranes enabled a more efficient myoblast differentiation in myotubes. In addition, we showed that a tunable amount of BMP-2 can be loaded into and subsequently released from the membranes, depending on the crosslinking degree and the initial BMP-2 concentration in solution. Only the more crosslinked membranes were found to be osteoinductive in vivo. These polysaccharide-based membranes have strong potential as a periosteum-mimetic scaffold for bone tissue regeneration.This work was financially supported by the Foundation for Science and Technology (FCT) through the scholarship SFRH/BPD/96797/2013, Fundo Social Europeu (FSE), and Programa Diferencial de Potencial Human (POPH) granted to Sofia G. Caridade. C.M. is indebted to the Association Francaise contre les Myopathies for financial support via a post-doctoral fellowship (AFM project 16673). J.A. acknowledges the Whitaker International Fellows and Scholars Program for support via a post-doctoral fellowship. This work was supported by the European Commission (FP7 program) via a European Research Council starting grant (BIOMIM, GA 259370 to C.P.) and by the AFM (grant Microtiss, 16530). We thank Isabelle Paintrand for her technical help with the confocal apparatus

    Fachhochschule und Praxis in der Weiterbildung. Ermittlung des Weiterbildungsbedarfs unter Einbezug von Personen und Organisationen aus der Praxis

    No full text
    Die Soziale Arbeit ist mit immer komplexeren Problemstellungen konfrontiert. Nicht nur entstehen im Zuge des sozialen Wandels neue Klientengruppen mit neuen AnsprĂŒchen, auch die politischen Rahmenbedingungen verĂ€ndern sich stetig. Sozialarbeitende sind gefordert, am Ball zu bleiben und sich neu benötigtes Fachwissen abzuholen: beispielsweise an Fachhochschulen. Doch wie gelingt es eigentlich den Fachhochschulen, am Ball zu bleiben

    Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B

    No full text
    Immune-to-brain communication is essential for an individual to aptly respond to challenging internal and external environments. However, the specificity by which the central nervous system detects or 'senses' peripheral immune challenges is still poorly understood. In contrast to post-mortem c-Fos mapping, we recorded neural activity in vivo in two specific cortico-limbic regions relevant for processing visceral inputs and associating it with other sensory signalling, the amygdala (Am) and the insular cortex (IC). Adult rats were implanted with deep-brain monopolar electrodes and electrical activity was monitored unilaterally before and after administration of two different immunogens, the T-cell-independent antigen lipopolysaccharide (LPS) or the T-cell-dependent antigen staphylococcal enterotoxin B (SEB). In addition, the neural activity of the same individuals was analysed after single as well as repeated antigen administration, the latter inducing attenuation of the immune response. Body temperature and circulating cytokine levels confirmed the biological activity of the antigens and the success of immunization and desensitization protocols. More importantly, the present data demonstrate that neural activity of the Am and IC is not only specific for the type of immune challenge (LPS versus SEB) but seems to be also sensitive to the different immune state (naive versus desensitization). This indicates that the forebrain expresses specific patterns of electrical activity related to the type of peripheral immune activation as well as to the intensity of the stimulation, substantiating associative learning paradigms employing antigens as unconditioned stimuli. Overall, our data support the view of an intensive immune-to-brain communication, which may have evolved to achieve the complex energetic balance necessary for mounting effective immunity and improved individual adaptability by cognitive functions

    Chemical destruction of brain noradrenergic neurons affects splenic cytokine production

    No full text
    The neurotransmitter noradrenaline (NA) plays a pivotal role in immune regulation. Here we used the selective neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to investigate the impact of central NA depletion on cytokine production by splenic monocytes/macrophages and T cells. Intraperitoneal administration of DSP-4 in adult rats induced a substantial reduction of noradrenergic neurons in the locus coeruleus and the A5 cell group. The degeneration of brainstem noradrenergic neurons was accompanied by a significant decrease in the production of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha by lipopolysaccharide-stimulated splenocytes. In addition, upon T cell receptor stimulation with anti-CD3, isolated splenocytes of DSP-4 treated animals produced significantly less interferon (IFN)-gamma but not IL-2 and IL-4. The proportion of monocytes/macrophages and T cells in the spleen remained unaffected by the neurotoxin treatment, however, the percentage of natural killer cells decreased significantly. The findings suggest that a certain level of central noradrenergic tone is required for normal functioning of peripheral immune cells

    Acute amygdaloid response to systemic inflammation

    No full text
    The amygdala, a group of nuclei located in the medial temporal lobe, is a key limbic structure involved in mood regulation, associative learning, and modulation of cognitive functions. Functional neuroanatomical studies suggest that this brain region plays also an important role in the central integration of afferent signals from the peripheral immune system. In the present study, intracerebral electroencephalography and microdialysis were employed to investigate the electrophysiological and neurochemical consequences of systemic immune activation in the amygdala of freely moving rats. Intraperitoneal administration of bacterial lipopolysaccharide (100 ÎŒg/kg) induced with a latency of about 2 h a significant increase in amygdaloid neuronal activity and a substantial rise in extracellular noradrenaline levels. Activated neurons in the amygdaloid complex, identified by c-Fos immunohistochemistry, were mainly located in the central nucleus and, to a lesser extent, in the basolateral nucleus of the amygdala. Gene expression analysis in micropunches of the amygdala revealed that endotoxin administration induced a strong time-dependent increase in IL-1ÎČ, IL-6, and TNF-α mRNA levels indicating that these cytokines are de novo synthesized in the amygdala in response to peripheral immune activation. The changes in amygdaloid activity were timely related to an increase in anxiety-like behavior and decreased locomotor activity and exploration in the open-field. Taken together, these data give novel insights into different features of the acute amygdaloid response during experimental inflammation and provides further evidence that the amygdala integrates immune-derived information to coordinate behavioral and autonomic responses

    Calcineurin inhibition in splenocytes induced by pavlovian conditioning

    No full text
    Pavlovian conditioning is one of the major neurobiological mechanisms of placebo effects, potentially influencing the course of specific diseases and the response to a pharmacological therapy, such as immunosuppression. In our study with behaviorally conditioned rats, a relevant taste (0.2% saccharin) preceded the application of the immunosuppressive drug cyclosporin A (CsA), a specific calcineurin (CaN) inhibitor. Our results demonstrate that through pavlovian conditioning the particular pharmacological properties of CsA can be transferred to a neutral taste, i.e., CaN activity was inhibited in splenocytes from conditioned rats after reexposure to the gustatory stimulus. Concomitant immune consequences were observed on ex vivo mitogenic challenge (anti-CD3). Particularly, Th1-cytokine, but not Th2-cytokine, production and cell proliferation were impeded. Appropriate pharmacological and behavioral controls certify that all these changes in T-lymphocyte reactivity are attributable to mere taste reexposure. Furthermore, the underlying sympathetic-lymphocyte interaction was revealed modeling the conditioned response in vitro. CaN activity in CD4(+) T lymphocytes is reduced by beta-adrenergic stimulation (terbutaline), with these effects antagonized by the beta-adrenoreceptor antagonist nadolol. In summary, CaN was identified as the intracellular target for inducing conditioned immunosuppression by CsA, contributing to our understanding of the intracellular mechanisms behind "learned placebo effects.

    Neurobehavioural activation during peripheral immunosuppression

    No full text
    Like other physiological responses, immune functions are the subject of behavioural conditioning. Conditioned immunosuppression can be induced by contingently pairing a novel taste with an injection of the immunosuppressant cyclosporine A (CsA) in an associative learning paradigm. This learned immunosuppression is centrally mediated by the insular cortex and the amygdala. However, the afferent mechanisms by which the brain detects CsA are not understood. In this study we analysed whether CsA is sensed via the chemosensitive vagus nerve or whether CsA directly acts on the brain. Our experiments revealed that a single peripheral administration of CsA increases neuronal activity in the insular cortex and the amygdala as evident from increased electric activity, c-Fos expression and amygdaloid noradrenaline release. However, this increased neuronal activity was not affected by prior vagal deafferentation but rather seems to partially be induced by direct action of CsA on cortico-amygdaloid structures and the chemosensitive brainstem regions area postrema and nucleus of the solitary tract. Together, these data indicate that CsA as an unconditioned stimulus may directly act on the brain by a still unknown transduction mechanism
    corecore